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AbItract-The response of a transversely isotropic beam of finite length to a frictionless cylindrical
and flat indenter is studied. Solutions arc obtained through a global-local tcchnique, which accounts
for the local behavior near the indenter, as well as the global beam behavior. The method ofanalysis
superposes an infinite elastic layer solution derived through the usc of integral transforms with a
beam theory solution. Local indenter stresses, as well as displacements and rotations, arc computed
for each case and plotted for various ratios ofcontact width to beam length and for various positions
of the indenters. To study the effccts of anisotropy, each problem is solved using two materials:
one nearly isotropic, the other highly anisotropic. Results arc compared to those of an earlier
isotropic study, and to Hertz theory and beam theory solutions.

I. INTRODUCTION

The study performed in this article continues the investigation of Keer and Schonberg[l)
on isotropic cantilever beams. Consider now a finite, transversely isotropic layer, fixed on
one end, free on the other, and loaded by an indenter that is cylindrical [Fig. l(a») or fiat
[Fig. l(b»). This problem is seen often in mechanical applications and may later also serve
as a model for impact phenomena in turbine blades that are made of composite materials.
Usual methods of solution are applicable only in a limited class of such problems. The
method of solution used here is one that superposes an elastic layer solution with a Euler­
Bernoulli beam theory solution. Layer solution loads at the ends of the beam are cancelled

10

Fig. I(a). Problem configuration (Case I).

Fig. I(b). Problem configuration (Case II).
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1034 L. M KEER AND W P SCHONBERG

by beam theory solution loads in such a manner that the boundary conditions there are
satisfied. While the layer solution is an exact solution, it should be noted that for the case
of a cantilever beam, a beam theory solution mayor may not meet the requirements of
compatibility, depending on the type ofloading that is prescribed. Thus, in the superposition
ofa layer solution with a beam theory solution, there exists the possibility that two solutions
having different orders of accuracy are being combined. A check of the compatibility of
cantilever beam solutions indicates that concentrated end-load solutions (i.e. solutions in
which the displacement functions are third degree polynomials) are exact. Therefore, the
transverse displacement function of the beam theory solution is chosen to be a third degree
polynomial. The resulting full solution is then a superposition of two exact solutions (beam
theory plus elastic layer), where the coefficients in the displacement function are determined
from the boundary conditions of a cantilever beam applied to appropriate full solution
expressions. In this way the loading on the cantilever is dealt with by the layer solution,
while the beam theory solution is responsible for the end conditions. In the enforcement of
these conditions, it is assumed that thickness effects are negligible at the ends of the
cantilever.

The physical quantities of interest are the stress distributions under each indenter and
the displacements and rotations of the beams under each indenter. Following the procedure
of Keer and Schonberg, an extensive study of the response of transversely isotropic can­
tilever beams subjected to various loading conditions is performed. The reader is referred
to the earlier study involving cantilever beams for a more detailed description of the
techniques used here.

The results of this study are compared to those for isotropic cantilever beams. To
assess the effect of the transverse isotropy, each problem is solved for two materials:
magnesium (nearly isotropic) and cadmium (highly orthotropic). The results are further
compared to elementary beam theory solutions and Hertz theory solutions for accuracy
assessments.

2. CASE I. CYLINDRICAL INDENTER-PROBLEM FORMULATION

The problem to be solved is that of an elastic layer of thickness h and length I that is
transversely isotropic about the z axis and is indented by a cylindrical punch on its upper
surface [Fig. 1(a)]. The conditions at the ends of the layer are those of a cantilever beam:
clamped on the left and free on the right. The boundary conditions for the elastic layer
problem and beam theory problem are, respectively, as follows.

Elastic layer (boundary conditions on z = 0, h):

't'zlx, h) = 0, Ixl < 00,

't'xz(x, h) = 0, Ixl < 00,

't'xlx,O) = 0, Ixl < 00,

't'z.(x, O) = 0, C < Ixl < 00,

Uz(x, 0) = A-x2/2R, 0 < Ixl < c.

Beam theory (boundary conditions at x = -/0, 1-/0):

Uz= 0, x = -10,

U=O, x = -/0,

M=O, x = 1-/0,

V=O, x = 1-/0,

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

(2.7)

(2.8)

(2.9)
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The superposition solution (layer plus beam theory) must satisfy eqns (2.1 )-(2.9). A suitable
elasticity solution that represents loading on the upper surface of such a layer and no
loading on the lower surface can be obtained using the techniques of Sneddon[2] and Green
and Zerna[3], and is found to be

T•• = roo Es{{) cos {x+ EA({) sin {x
.. Jo D(~)

x {Jll.J(~) cosh (e:IJV1)+JV2H(~)cosh(ezIJV2)

- G(~)[JVI sinh (~ZIJVI)-.jV2 sinh (~ZI.jV2)J) de, (2.10)

__ roo Es(e>sin~x-EA~)cos~x
Tx

: - Jo D(~)

x {I(e) sinh (~zIJvl)+H(~)sinh(~zl.jV2)

-G(e)[cosh (eZI.jVl)-Cosh (ezIJvJ]) de, (2.11)

_ r<Xl ES<~)cosex+Eie)sin ~x
Tn - Jo D(e)

x {- JI I(e) cosh ({ZIJV1)- JI H({) cosh (eZIJV2)
VI V2

+ G(e{)v I sinh (ezIJvl)- )V2 sinh (ezlJvJ]}de, (2.12)

u. = _I roo Es<e) cos ex+Eie) sin ex
• C44JO eD(e)

x{-I/(1 I(~)sinh(ezIJvI)+-I/(2 H(e)sinh(~zIJV2)
+/(I +/(2

-G(~)[-I/(1 cosh (ez/Jvl)- -1/(2cosh (ez/JvJ]} de, (2.13)
+/(I +/(2

X {tJV1
I(e) cosh (ezIJvl)+ t

JV2 H(e)cosh(~z/JV2)
+/(I +/(2

-G(~)[lJvl sinh(ez/.jvl)- I
JV2

Sinh(ezIJv2)]}de, (2.14)
+/(I +/(2

where

(2.15)

(2.16)
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(2.17)

(2.18)

and p, = ~h/v,. The material constants v, and ", are obtained using the techmque outlined
in Green and Zerna. The v, are the roots of the equation

The ", are then obtained from the v, via the relationship

K 11 V,-K44

", = K
I3

+K44 '

(2.19)

(2.20)

where the KiJ are constant functions of the layer moduli C'j and whether the layer is in a
state of plane strain or plane stress. If a state of plane strain is assumed, then K'j = C'j; if
plane stress is assumed, then K '1 = CII-cr2/CII> KI3 = CI3-C\2CI3/CII, K33 = c33-cT3/cll and
~ = C44'

It is seen that on y = h, the normal and shear stresses vanish automatically, and that
on y = 0, the shear stresses vanish. The normal stress on y = 0 is given as

(2.21)

Substituting

into eqn (2.18) yields

I
e l/J(t)dt Ie ¢(t)dt

't'z:(x,O)= J(2 2)+X J(2 2)'
x t -X x t t-x

(2.22)

(2.23)

(2.24)

The moment, shear and average slope due to the stresses as given by eqns (2.10)-(2.12) are
given by

(2.25)

(2.26)

(2.27)
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For the beam theory solution, the transverse displacement is taken to be of the form

(2.29)

Assuming the hypotheses of Euler-Bernoulli beam theory, the following expressions
for the moment, shear and average slope of a transversely isotropic beam are obtained:

VB = -6D*a3'

where the bending stiffness D* is given by

(2.30)

(2.31)

(2.32)

(2.33)

with n = 0 for plane strain, and n = (CI2-ci3!C33)!(Cll-et3!C33) for plane stress. The
constants OJ, 02 and 03 are obtained by superposing appropriate beam theory expressions
with corresponding layer expressions and applying the beam theory boundary conditions,
given by eqns (2.6}-{2.9). The resulting expressions are

.jV2 100 .F\~) .
01 = hC44JO D(~)[Es(e)sm~/o+EA(e)Coselo]de

I foo {/o(/-/o!2) .
- D* Jo e [Es(~)sme(l-/o)-EA(e)Cose(/-/o)]

+ ~~[Es(e)COse(l-/o)+EA(e) sin e(/-/o)]}d~, (2.34)

(2.35)

(2.36)

Equation (2.5) is treated in a similar manner. Differentiating with respect to x, and
separating the resulting equation into symmetric and antisymmetric components yields

DUE I x_z(xO) +2a2x=--ax ' A R'
(2.37)
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(2.38)

Consider first eqn (2.37). Substituting for uf(x, 0), combining terms in Esm and EA (~),

and making use of eqns (2.22) and (2.23) yields

i

e
iOCI [D* ( K I K 2 ) Gee> .t/J(t) - -- - -- --sm~x

o 0 C44 I +K, I +1(2 D(~)

-x cos ei~-lo) -x(/-lo) sin e~-IO)]Jo(et)de dr

+ f: «p(t) 1<>[x(/-lo) COSe~-lo)_xsineiI2-lo)]JI(et)dedt = - D;X. (2.39)

The improper asymptotic behavior of the first term in the first kernel at infinity is adjusted
by adding and subtracting the term

After simplification, eqn (2.39) reduces to

D* ( I( I() 1 ie ie
D*x- -1_1- - -1_2_.j .j t/J(x)+ t/J(t)K,(x, t)dt- «p(t)Kix, r)dr =- -R '

C44 +1(1 +1( VI- V2 0 0

(2.40)

where

K2(x, t) = (n/4)tx.

Returning to eqn (2.38), performing similar manipulations yields

(2.41 )

(2.42)

(2.43)

The improper asymptotic behavior of the first term in the second kernel is adjusted by
adding and subtracting the term
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After simplification, eqn (2.43) reduces to

1039

where

(2.45)

Equations (2.40) and (2.44) are the two coupled integral equations for the unknown
auxiliary functions ljJ(x), cjJ(x). Once ljJ(x), cjJ(x) are obtained, all necessary physical quantities
may be calculated.

The normal stress under the indenter is calculated using eqn (2.24). The resultant load
and moment due to the symmetric and antisymmetric components, respectively, of the
normal stress are obtained as follows:

p = Ie 'rzzdx = -1t fe ljJ(t) dt,
-e Jo

(2.47)

(2.48)

The deflection under the indenter, lJ., is evaluated after first solving for the constant ao
through the use of the boundary condition given by eqn (2.6) :

(2.49)

After superposition of the two solutions, substitution and simplification, the final result is

_J'L cos e(/-/o) _ /3(3/-/0) sin e(/-lo)]J (J' )dJ' d
2D* e2 6D* eO" t .. t

_J'L sine(/-lo) !3(3/-10)COSe(/-10)]J (J' )dJ'd
2D* e2 + 6D* e l ..

t .. t.

After adjusting the behavior of the kernels at infinity, further simplification yields

(2.50)

(2.51)
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The rotation of the beam under the indenter is found by superposingeqns (2.27) and (2.32),
and substituting for ao, ah a2 and a3 :

D(x) = ( l{I(t) (al {.JV2 F(e) (sin ex+sin e1o) _ A(x) sin e(l-/o)
Jo Jo hC44D(e) , D*,

_1;XCOS';~-/o)}Jo(et)dedt

+ ( <p(t) (al {_ .JV2 F(,) (cosex-coselo) + A(x)cose(/-/o)
Jo Jo hC44D(e) e D* e

_1;xsin'~~-/o)}JI(et)dedt, (2.54)

where

A(x) = /o(l-lol2)+x(I-/o)-x 2/2.

After adjusting the behavior of the kernels at infinity, further simplification yields:

(2.55)

1 (".Jv " .Jv ) { [rt £XIIf(x)=-h -11
_

1 --12
2 sgn(x) H(c-Ixl) -2 y,(t)dt

C44 +"1 +"2 0

+ ty,(t)sin- I ('~I) dtJ +H(lxl-c)~f: Y,(t)dt}

+ f: y,(t)K7(t) dt+ f: tjJ(t) Ks(t) dt, (2.56)
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Ks(t) = rOO{ __1 [.JV2F(e)_("I.JVI_"2.JV2) 1 ] cos ex-cos elo}
Jo hC44 D(e) 1+11:1 1+"2.jVI-.jV2 e

1t lo+x
X J,(et)de- 4D*t. (2.58)

The rotation of the beam is calculated at the point under the indenter about which the
moment produced by the antisymmetric stresses is zero. This point is obtained from statics
simply as x = -e = MIP.

3. PROBLEM SOLUTION

The auxiliary functions tjJ(x) and q,(x) are obtained by solving equations (2.40) and
(2.44) numerically. These equations are nondimensionalized through the use of the following
parameters:

~ = clh, e= elh,

ex = lolh, y = Ilh,

u = tIc, y = xlc,

(3.1a,b)

(3.1c,d)

(3.le,f)

(3.2)

(3.3)

Conditions of plane strain are assumed for the solution of eqns (2.40) and (2.44) and for
the evaluation of the constants VI, "I and D*. In this manner, we are also given an insight
into the response of a long rectangular plate that is subjected to cylindrical indentation.
Once the nondimensionalized auxiliary functions 'fI(y), 4>(y) are obtained, eqns (2.24),
(2.47), (2.48), (2.51) and (2.56) are used to calculate nondimensionalized stress, loads
moments, deflections and rotations. These nondimensionalized quantities are transformed
back to real quantities via the following relationships:

l!. = h2!IR,

(J = hblR.

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
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The results of this study are checked in two ways. First, the symmetric component of
the normal stress under the indenter is compared to a Hertzian contact stress solution. The
Hertz solution is found by letting clh - 0 in eqns (2.40) and (2.44). In this case, the auxiliary
functions are given by

4Jn<x) == O.

Substituting eqns (3.9) and (3.10) into eqn (2.24) and integrating yields

(3.9)

(3.10)

Second, the displacement and rotation of the beam under the indenter are compared with
the corresponding values derived from the following classical transversely isotropic beam
theory expressions:

4BT == (2P/~+3M/i)/6D*,

gST == [P(/5-e 2)+2M(/o-e)]/2D*,

(3.12)

(3.13)

where P and M are the load and moment as calculated by eqns (2.47) and (2.48), respectively.
If an experimental verification of the results is desired, then conditions of plane stress

must be assumed in the solution of eqns (2.40) and (2.44). This assumption would be
consistent with the use of a thin beam in a laboratory study. A check of the constants
appearing in eqns (2.40), (2.44), (2.51) and (2.56) reveals that the response of a beam made
of a highly anisotropic material, such as cadmium, is very sensitive to whether the beam is
assumed to be in a state of plane strain or plane stress. Thus, in an experimental study, one
must be very careful to make sure that the experimental setup accurately models the assumed
state of stress.

4. OBSERVATIONS AND CONCLUSIONS

Two transversely isotropic materials were chosen for this study. The first, magnesium,
is nearly isotropic. To study the effect of more severe anisotropy, the second material was
chosen to be cadmium. The elastic moduli of the two materials are listed in Table 1. For
each material, solutions were obtained for /Ih == 10.0 and 20.0, and for each /Ih,/olh == 0.2S/lh,
O.S//h and 0.7S/lh. It was found that for small values of clh the stress distributions for
different values of //h remained virtually identical. However, for larger values of clh (i.e.
clh > 0.5), the stress distributions began to differ. This behavior is illustrated in Table 2,
which compares peak total stresses for different values of clh and /oIh for a beam with
//h == 10. It was found that the peak total stresses in cadmium beams were generally less
than those in magnesium beams. By comparison with the data obtained for steel beams[l],

Table I. Elastic moduli for magnesium and
cadmium (in N m-2)

Magnesium Cadmium

Cll 5.857 x 10'0 10.920 X 10'0
CI2 2.501 X 10'0 3.976 x 10'0
cl3 2.079 x 10'0 3.754 x lO'0
Cll 6.110x 1010 4.602 x 10'0
c.. 1.658 X 1010 1.562 X 1010
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Table 2. Peak total stresses (Case 1, Ilh = 10.0)

Cadmium MagnesIUm

{'Ih lulh = 2.5 lulh = 5.0 lolh = 7.5 10/" = 2.5 I"ih = 5.0 1,,1" = 7.5

0.1 0.6361 0.6361 0.6361 0.6361 0.6361 0.6361
0.2 0.6333 0.6362 0.6362 0.6362 0.6295 0.6362
0.5 0.6360 0.6399 0.6382 0.6707 0.6560 0.6493
0.8 0.7057 0.6986 0.6968 0.7911

it was found that the peak total stresses in magnesium beams were less than those in steel
beams. Therefore, it can be concluded that in the case ofcylindrical indentation, the general
effect of increased anisotropy is to lower the total normal stress under the indenter. It is
noted that the resultant changes in peak total stress are on the order of2% for small contact
lengths, but can go as high as 20% (magnesium) or 30% (cadmium) for large contact
lengths.

A typical symmetric stress distribution is shown in Fig. 2; that of the total stress under
the indenter is shown in Fig. 3. As can be seen in Fig. 2, for small values of c/h the Hertzian
distribution approximates the stress under the indenter quite well. As c/h increases, the
effect of the antisymmetric nature of the problem increases, and the distribution changes
significantly. In Fig. 3, this effect is seen as the location of the peak total stress shifts to the
left and the distribution becomes less and less parabolic. Tables 3 and 4 show a comparison
between the elasticity solutions developed here and the classical beam theory solutions. The
elasticity solutions for both material types are seen to agree well with the beam theory
solutions.

Upon examination of the load vs contact length and load vs displacement data, it was
found that for the same load, cadmium beams experienced a larger contact length than the
corresponding magnesium beams. Or, for the same contact length, magnesium beams can
tolerate a higher load than cadmium beams. This is illustrated in Fig. 4 for the case where
l/h = 10.0. Similarly, it was found that for the same load, the magnesium beams experienced
a larger deflection under the indenter than the cadmium beams, as is illustrated in Fig. 5
for the case where l/h = 20.0. In Fig. 5, the nondimensionalized load parameter defined in
eqn (3.5) was rewritten as

.70 /C/h a O.2.0.!5 and Hertz
L-__

(4.1)

.!56

0.. .42

~..."
y

.28

.14

x/c

Fig. 2. Symmetric stress distribution (Case I) (magnesium; Ilh ... 20.0, lolh = 15.0).
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c/h'08

~
8

c:/h' 0.5

Fig. 3 Total stress distribution (Case I) (magnesium; 'Ih = 20.0. 'nIh = 15.0).
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Fig 4. Load-rontact width (Case I) ('Ih = 10.0).
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Fig 5. Load~isplacement (Case I) (/Ih = 20.0).
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Table 3. Displacement companson (Case I)

loJh = 2.5 lo/h = 5.0 lo/h = 7 5

Elasticity Beam theory Elasticity Beam theory Elasticity Beam theory c/h

E C! 0.25 0.25 2.02 2.02 6.78 6.78 0.1
= 0

1.04 1.04 8.29 8.30 27.36 27.38 0.2·s
"tl II 5.08 5.09 37.28 37.37 115.26 115.41 04
~

-c
156.35 159.59 291.89 293.20 658.92 660.20 0.8:::::-

E 0 0.48 0.48 3.86 3.86 13.00 13.00 01= ~1 2.01 2.01 16.15 1615 52.86 52.87 0.2
II 12.63 12.67 83.94 84.04 232.31 232.46 04os -c

1646.09 1647.74 08~ :::::-

where A(clI) is a function of the elastic constants of each material. It was found that the
values of A(Cu) for cadmium and magnesium were virtually identical. Thus, defining A.o as
the average of the two values, eqn (4.1) can be rewritten as

P= AcnPR/D*. (4.2)

Through such a representation of the load parameter, the effect of the difference in bending
stiffness between the two beam types is seen more clearly. The behavior illustrated in Fig.
5 is due to the combined effect of lower and higher stiffnesses in the vertical and horizontal
directions, respectively, of the cadmium beams. As such, the bending stiffness ofa cadmium
beam is greater than the bending stiffness of a magnesium beam. As the load increases, in
the case of the transversely softer cadmium beams, the indenter penetrates more deeply
into the beam. This results in a larger contact length (e.g. Fig. 4), as well as in a smaller
deflection (e.g., Fig. 5).

It is interesting to note that in this study, as well as in the one performed on isotropic
beams[l], although the local-global formulation used rendered the problems nonlinear. the
load-displacement curves were, in the regions indicated, virtually linear. This characteristic
is drastically different from that of the load-displacement curves obtained by MiIler[4] and
Ballarini[S], which are highly nonlinear in nature. Such differences in behavior are due to
the effect of wrapping being negligible in the case of a cantilever beam. If the beam is either
simply supported or clamped on both sides,the effect ofwrapping is much more pronounced.
For the range ofloads and displacements considered here, the nonlinearities introduced by
wrapping are hardly noticeable.

To ensure that the actual rotations are "small", the following lower bound must be
placed on R/h:

(4.3)

Table 4. Rotation comparison (Case I)

loIh = 2.5 loIh = 5.0 loIh = 7.5

Elasticity Beam theory Elasticity Beam theory Elasticity Beam theory c/h

§ 0 0.\4 0.15 0.60 0.61 1.34 1.36 0.1ci·s 0.58 0.62 2.45 2.49 5.44 5.48 0.2
"tl II 2.86 3.05 11.03 11.20 22.91 23.07 0.4
~

-c
88.97 93.07 86.00 86.89 130.43 131.02 0.8:::::-

E 0 0.28 0.29 1.14 1.16 2.59 2.60 0.1= ~'fj 1.15 1.20 4.79 4.84 10.52 10.58 0.2
~

II 7.27 7.58 24.93 25.\8 46.24 46.45 0.4-c
~ :::::- 324.94 325.13 0.8
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Table 5 Minimum allowable values of R/h (Case I).

//h = 10.0 l/h = 20.0

c/h lo/h = 2.5 lo/h = 5.0 lo/h = 7.5 lo/h = 5.0 lo/h = 10.0 lo/h = 15.0

e 0.1 0.5 1.8 3.9 1.8 6.9 15.7
:le 0.2 1.8 7.0 15.6 73 28.4 64.1
." 0.4 8.2 316 66.1 36.0 147.2 289.0
'"U 0.8 278.5 246.5 373.8 23065

e 0.1 0.8 33 7.5 3.4 13.3 298:l
iii 0.2 3.3 13.8 30.2 14.9 60.5 124.9«>
l::: 0.4 20.9 71.5 132.5 127.9 577.1 651.0Oll

'" 0.8 929.4 55,801.5::E

Assuming the value Uo = 20° (0.349 rad), Table 5 shows the minimum allowable values of
R/h to ensure small deflections and no yielding.

The results discussed here demonstrate clearly that transversely isotropic materials,
having a preferred direction, are very sensitive to loadings in their non-preferred directions.
These results can be further used to estimate the behavior of compositie materials, since
they also exhibit this kind of behavior.

5. CASE II: FLAT INDENTER-PROBLEM FORMULATION

The problem to be solved is that of an elastic, transversely isotropic layer of thickness
h and length / indented by a flat punch on its upper surface [Fig. l(b)J. The boundary
conditions for the elasticity problem and beam theory problem whose solutions shall be
superposed to form the full solution are, respectively, as follows.

Elastic layer (boundary conditions on z = 0, h):

'tzz(x, h) = 0, Ixl < 00,.
'txz(x, h) = 0, Ixl < 00,

'txz(x,O) = 0, Ixl < 00,

'tzix,O) = 0, c < Ixl < 00,

u,(x,O) = Ii, 0< Ixl < c.

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

Beam theory (boundary conditions at x = -/0' /-/0):

Uz= 0, x = -/0'

U=O, x = -/0'

M=O, x = /-/0'

V=O, x = /-/0'

(5.6)

(5.7)

(5.8)

(5.9)

It is further required that the normal stress be nonsingular at x = c:

(5.10)

This condition ensures a smooth deflection of the beam for x> 0 and results in a decreasing
contact length with increase of load.
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The suitable elasticity solution for this problem is given by eqns (2.10) through (2.15).
Using this formulation, the normal stress is given by

For a fiat punch, we let

Es(~) = AJo(ec)+f: y,(t)Jo(et)d~,

EA(~) = BJt(~c)+ f: f/I(t) Jt(et) de.

(5.11)

(5.12)

(5.13)

Substituting into eqn (5.11), it becomes evident that the singularity at x = c disappears if
A = - B. Making use of this substitution, eqn (5.11) becomes

(5.14)

The moment, shear and average slope are given by eqns (2.25), (2.26) and (2.27),
respectively. As before, the beam theory solution is taken to be

(5.15)

resulting in expressions for moment, shear and average slope given by eqns (2.30), (2.31)
and (2.32), respectively. The constants a" a2 and a3 are obtained as before, with identical
outcome. Differentiating eqn (5.5) with respect to x, and separating the resulting equation
into symmetric and antisymmetric component yields

(5.16)

(5.17)

Considering each equation one at a time and following the same procedure as before
results in the following equations for A, B, y,(t) and f/I(t) :

D* ( "t "2) 1AK I(X, c)+ - -- - -- y,(x)
C44 1+"1 1+"2 JlIl-JlI2

+ J: y,(t)K)(X, t)dt-BK2(x, c)- f: f/I(t)K2(x, t) =0, (5.18)

(5.19)
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K 2(x,I'/) = (n/4)xl'/,

K 3(x, I'/) = (n/4)x 2
,

(5.20)

(5.21)

(5.22)

and '1 = c or t. Equations (5.18) and (5.19) are two equations in four unknowns. A third
equation was obtained earlier by eliminating the singularity of the normal stress at x = C

(i.e. A +B = 0). The fourth equation is found by enforcing the boundary condition given
by eqn (5.5). This yields the following expression for the constant B:

B = [!:J.-lc

t/f(t)Ks(t)dt- fa' ¢(t)K6(t)dt]/[K6(C)-Ks(C)], (5.24)

where

Ks(I'/)- r"-{ __I (_KI _~)[G(e)_ I ]1-cose/o
- Jo C44 I +K2 I +K2 D(e) JVI-JV2 e

+~[Jv Fee> _ (K1JV1_ K2JV2) I ]sine/o
hC44 2D(e) I +KI I +K2 JVI -JV2 e

_ lfi COSW-/o)}J (e )de- nI5(3/-/o)
2D* e2 0 '1 12D*

- C:4C:~I -I :2K) JVI ~JV2 cosh- ' (~)

n10 (K1JV1 K2JV2) I (5.25)
+2hc44 I+K) - I+K2 JV)-JV2'

and 1'/ = cor t. Making use ofeqn (5.25) in eqns (5.18) and (5.19) yields
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Equations (5.27) and (5.28) are solved numerically for the unknown auxiliary functions
"'(x) and q,(x). Once "'(x) and q,(x) are obtained, all necessary physical quantities may then
be calculated. The normal stress under the indenter is calculated using eqn (5.14). The
resultant load and moment are given by

P = 1tB-1t J: "'(t)dt,

The rotation of the beam at any point x > c is given by

(5.29)

(5.30)

~(x) = B[Ks(x, c)- K,(x, c)]+ foe "'(t)K,(x, t) dt+ J: q,(t)Ks(x, t)dt

__1t_("I.jV 1 _ "2.jV2) 1 [B- (e "'(t)dt] (5.31)
2hc441+"1 1+"2.jvl-.jV2 Jo '

where

and '7 = cor t.

6. PROBLEM SOLUTION

Following a scheme similar to that of Section 3, we define

SAS 22:9-G

[
1 ( "I "2 )J-I ~cx"'(x) = - -- - -- --2 'P(x),

C44 1+"1 1+"2 h

(6.1)

(6.2)

(6.3)
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Conditions of plane strain are again assumed In the solution of eqns (5.27) and (5.28) and
for the evaluation of the constants v" Ie, and D*. Nondimensionalized stresses, loads,
moments and rotations are calculated and are transformed back to real quantities through

!zz = Pizz/e,

(J = !J.~/h.

(6.4)

(6.5)

(6.6)

(6.7)

In order to assess the accuracy of the solution, two tests are performed. First, the
rotation of the beam just beyond x = e is compared to that given by the standard beam
theory solution:

(6.8)

where 6 = e+. Second, the limit load of the receding contact problem is compared to the
beam theory load PBT due to a deflection !J. imposed on a cantilever beam:

PDT = 3aD*/I'i,. (6.9)

The limit load limc/h ... o PE is compared to the value of PBT for each case considered.
Once again, if experimental verification of the results is desired, then conditions of

plane stress must be assumed in the solution ofeqns (5.27) and (5.28) and in the evaluation
of displacements and rotations.

7. OBSERVATIONS AND CONCLUSIONS

Beams made of cadmium and magnesium were used in this study as well. For each
material, solutions were obtained for l/h = 10.0,20.0, and for each I/h, 11th = 0.251/h, 0.51/h
and 0.751/h. It was found that, except for those beams where the indenter was close to the
fixed end and produced a large area of contact, the stress distributions were virtually
identical. In those other beams, the stress distributions exhibited a marked increase in the
normal stress under the indenter. In these cases, the stress distributions were characterized
by a large central bulge, indicating a decline in the antisymmetric component of normal
stress. As can be seen in Table 6, these increases in total normal stress can range from 50
to 80% of the normal stress under an indenter that is further away from the fixed end and
which produces a smaller contact area. An example of such a stress distribution is given in
Fig. 6 for a cadmium beam with llh = 20.0. ldh = 5.0. Through a comparison with the

Table 6. Total normal stress at origin (Case II; Ith = 10.0)

CadmIUm Magnesium

cth Itlh =2.5 Idh = 5.0 11th = 7.5 11th =2.5 Idh =5.0 11th =7.5

0.2 0.3227 0.3258 0.3191 0.3305 0.3350 03126
0.5 0.3907 0.3418 0.3088 0.4173 0.3746 0.2911
0.7 0.4576 0.3411 0.2980 0.3931 0.2605
0.9 0.5710 0.3173 0.3023 0.2943 0.2905
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60 c~z/P
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36

/C/h-O.2 2.4

Ih -0.5

c/h-07
12 /

-1.0 -.5 0 .5 1.0
x/C

Fig. 6. Total stress distribution (Case II) (cadmium; Ith = 20.0. 11th = 5.0).

normal stresses under an indenter of an isotropic beam [1], it was found that, in cases where
the indenter was far away from the fixed end, the stresses in cadmium and magnesium
beams were of the same order of magnitude as those in steel beams for cases of small
contact, but lower in cases of large contact. Thus the effect of increased anisotropy on the
normal contact stress under a flat indenter can vary, depending on the size of the contact
area, and on the location of the indenter.

Tables 7 and 9 show a comparison between the elasticity solutions developed here and
the corresponding beam theory solutions. The elasticity solutions are seen to agree well
with the beam theory solutions. Following the same procedure as before, an upper bound
can be placed on the ratio of displacement under the indenter to beam thickness:

(7.1)

Assuming the value Uo = 0.349 rad, Table 8 shows the maximum allowable values of fJ./h
to ensure small rotations and no yielding.

The phenomena ofreceding contact is borne out in Table 9 and Fig. 7. As c/h -+ 0, the
nondimensionalized load parameter approaches a limit value greater than zero. In Table 9,
the limit loads of the elasticity solutions are seen to agree quite well with the limit loads of
the beam theory solutions. An inspection of the limit loads in Table 9 and a comparison
with the limit loads for isotropic beams indicates that increased anisotropy results in smaller

Table 7. Rotation comparison (Case II)

11th = 2.5 11th = 5.0 11th = 7.5

ElastiCIty Beam theory Elasticity Beam theory Elasticity Beam theory cth

E C! 0.4791 0.5348 0.2772 0.2848 0.1910 0.1933 0.2= 8·s 0.4457 0.4434 0.2612 0.2603 0.1827 0.1823 0.5
"0 II 0.4283 0.3843 0.2514 0.2420 0.1775 0.1741 0.7
~

-0:
::;;- 0.2349 0.2092 0.1698 0.1615 1.0

E C! 0.5192 0.5641 0.2863 0.2922 0.1948 0.1966 0.1='il 8 0.4883 0.5046 0.2745 0.2767 0.1890 0.1896 0.3
~ " 0.4672 0.4484 0.2644 0.2604 0.1833 0.1819 0.501 -0:
::t ::;;- 0.2357 0.2069 0.1704 0.1615 1.0
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Table 8. Ma~Jmum allowable values of AIIJ (Case II)

';h = 100 'Ih = 20.0

clll ',III = 2.5 'd" = 5.0 ',Ih = 75 ',/h = 5.0 ',Ih = 10.0 ',/h = 15.0

e 0.2 072 126 \ 85 1.26 243 357::I
'i§ 0.5 0.78 I 35 1.92 \ 33 2.50 3.66
"0 0.7 0.81 1.38 1.96 136 256 375<"lu 1.0 149 2.08 3.84

e
0\ 0.67 12\ 1.81 1.21 238 3.57::I.;;;
0.3 0.7\ 1.28 1.85 1.28 2.43 3.66.,

c:
till 0.5 0.75 1.33 1.92 1.31 250 375<"l

~ 1.0 149 208 3.84

Table 9. Limilload comparison (Case Il)

hmPdxlO- 2) Pllr< x 10- 2)
" .u

1,/h Cadmium Magnesium CadmIum Magnesium

=!
:; 25 22530 2.2400 2.2982 2.2906
II 5.0 0.2873 0.2877 0.2874 0.2863

-e: 7.5 0.0850 0.0846 0.0851 0.0848;;;;-

~ 5.0 0.2853 0.2861 0.2874 0.2863

II 10.0 0.0355 0.0358 0.0359 0.0358

~
15.0 00106 0.0106 0.0106 00106

limit loads. This agrees with the results for peak total normal stresses under cylindrical
indenters.

Upon examination of Fig. 7, it is seen that for the same load, cadmium beams
experienced a larger contact area than the corresponding magnesium beams. This behavior
is again due to the fact that cadmium beams, being softer in the vertical direction, are
penetrated by the indenter, resulting in larger areas of contact. It should be noted that the
nondimensionalized load parameter defined in eqn (6.5) has been rewritten as

P= A.r)l3P/D*A, (7.2)

30

2.4

MAGNESIUM

CADMIUM

06

00 0.2 0.4 0.6 0.8 10

c/h
Fig. 7. Load-eontacl width (Case II) (lIh = 10.0)
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where Ao has the same value as in the case of the cylindrical indenter. Once again, the larger
bending stiffness of a cadmium beam increases the area of contact under a flat indenter as
compared to the area of contact under the same indenter of the corresponding magnesium
beam.

8. SUMMARY

In the present study the behavior of transversely isotropic beams was found to have
significantly different results than those of corresponding isotropic beams subjected to
similar loadings.

In the case of a cylindrical indenter, it was found that for large contact lengths, highly
anisotropic beams exhibited much lower contact stresses than the corresponding isotropic
beams. For small contact lengths, the magnitudes of the stresses were relatively equal, and
were approximated quite well by Hertzian contact stresses. Furthermore, for a given
load, highly anisotropic beams experienced much larger contact areas and much smaller
deflections than corresponding isotropic beams. This behavior is due to the fact that in a
transversely isotropic beam, the indenter penetrates the material, and as a result produces
a larger area ofcontact and a smaller deflection.

In the case of a flat indenter, it was found that a transversely isotropic beam whose
indenter was close' to the fixed end and produced a large area of contact experienced a
significant increase in total normal stress under the indenter compared with a beam whose
indenter was further away from the fixed end. For the cases where the indenter was far
from the fixed end, it was found that the normal stress can be larger or smaller than the
stress exhibited in isotropic beams, depending on whether the area of contact is small or
large, respectively. Furthermore, as in the case of cylindrical identation, for a given load,
highly anisotropic beams experienced much larger contact areas.

Lastly, it is noted that the minimum allowable values of R/h and the maximum
allowable values of ~/h are, respectively, less than and greater than their corresponding
values for the isotropic beams. This indicates that, for a particular problem configuration,
a wider variety of cylindrical and flat indentations may be withstood by transversely
isotropic cantilever beams.
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